The Economic Effects of Moving Public Assistance Recipients into the Labor Force

Jonathan Haughton
Paul Bachman
David G. Tuerck

THE BEACON HILL INSTITUTE
165 Main Street, Suite 306, Medway, MA 02053
Email: bhi@beaconhill.org
Web: www.beaconhill.org

© THE BEACON HILL INSTITUTE JULY 2018
The Personal Responsibility and Work Opportunity Reconciliation Act of 1996 (PRWORA) contained “welfare-to-work” provisions aimed at moving individuals from public assistance rolls to jobs. Many public assistance recipients took jobs during a period of strong job growth in the latter half of the 1990s. It is less clear that PROWRA has been successful in this regard.

The PRWORA has two work requirements: Able-bodied childless adults 18-49 must work, train, or volunteer for 20 hours per week, and able-bodied adults 18-59 with no children under six must work or participate in a training program if assigned by a state. However, many states use loopholes in the PRWORA to waive the work requirements. Specifically, most states fail to assign recipients to a training program, in effect, negating the work requirement. Also, states have used regulatory loopholes to waive the 20 hour per week requirement for the vast majority of those subject to work requirements.

Policymakers are discussing reform legislation that would (1) require states to assign those adults to training programs if they are not working, and (2) eliminate the loopholes states use to waive the work requirement. Researchers have estimated that these requirements would add 1.11 million new workers to the U.S. work force.

The issue we need to address is this: “What happens to GDP when you add 1.11 million new workers to the work force?”

Case 1: The “naïve” forecast

When an employer hires a worker and compensates that worker to the tune of $18 per hour (including wages, salaries, and benefits), it is because that work (at the margin) contributes $18 worth of value to the organization. The hourly compensation rate in this case represents the “value of the marginal product of labor,” and is the contribution of that worker to GDP. We may think of GDP as representing the total value added to an economy in a year by labor and capital, and the compensation rate as representing the value added by a worker in an hour.

Thus the first way to measure the contribution to GDP of moving 1.11 million workers into the labor force is to multiply the number of new workers by their compensation rate.
The main challenge here is figuring out what that compensation rate would be, since it varies by gender and by education or skill level. We separate the labor force into four groups by gender (male/female) and education (no college/at least some college). Based on data from the most recent Current Population Survey, updated to the prices and expected income levels of 2018, we have the information on the levels of annual total compensation shown in Table 1.

The U.S. government provides assistance to qualified individuals through its Supplemental Nutrition Assistance Program, otherwise known as “SNAP” or “food stamps.” A total of 24.88 million adults are in households that receive SNAP benefits, and of these, about a third (8.52 million) work. An estimated 95.5% of adult SNAP beneficiaries, and 97.6% of those who work, have no more than a high school education. When SNAP beneficiaries are moved into work, almost all of them will be entering the unskilled (“on-the-job training” or OJT) segment of the labor force, where compensation and productivity are relatively low (Hanson and Hamrick 2004). The average annual labor compensation of those SNAP recipients who work is just $21,471, compared to $67,996 for the US population as a whole. Working SNAP recipients work for about two-thirds as many hours per week as non-recipients; and if they earn too much they graduate out of the program.

Now assume that 1.11 million SNAP recipients are moved into work, in proportion to their current proportions as broken down by gender and skill level. Since their average annual total compensation is $21,471, this would represent an increase in GDP of $23.8 billion \((= 1.11 \text{ million} \times 21,471) \). This may be represented by

\[
\Delta GDP = \sum_i \sum_j w_{ij} dL_{ij}
\]

where \(w \) is the annual compensation for the group, indexed by \(i \) for gender and \(j \) for skill level, and \(dL \) represents the change in employment for the group. A more formal treatment of, and justification for, this measure is given in Appendix 1.

This is a “naïve” estimate of the effect on GDP, because it does not take into account any behavioral reaction on the part of other workers or of investors.
Case 2: Short run with same capital stock but labor adjustment

The incorporation of an additional million workers in the labor force will put downward pressure on wages. In the current case, the effect will mainly be on the wages of unskilled workers, who now have to compete more strongly for jobs. The lower wages will lead some workers to withdraw from the labor force. This will mitigate to some extent the increase in GDP measured using the “naïve” approach.

Table 1. Estimated labor compensation for SNAP recipients, and all adult individuals, US, 2018

<table>
<thead>
<tr>
<th></th>
<th>SNAP recipients</th>
<th>All individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>High school education or less</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population (m)</td>
<td>9.88</td>
<td>13.89</td>
</tr>
<tr>
<td>Employment (m)</td>
<td>4.86</td>
<td>5.41</td>
</tr>
<tr>
<td>Total compensation ($ bn)</td>
<td>122</td>
<td>96</td>
</tr>
<tr>
<td>Compensation per year ($)</td>
<td>25,104</td>
<td>17,802</td>
</tr>
<tr>
<td>At least some college education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Population (m)</td>
<td>0.39</td>
<td>0.72</td>
</tr>
<tr>
<td>Employment (m)</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>Total compensation ($ bn)</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Compensation per year ($)</td>
<td>36,809</td>
<td>25,869</td>
</tr>
</tbody>
</table>

Source: CPS ...

To determine the relevant magnitude, we need to measure the “displacement effect” (given by \(\lambda_u \)), which gives the number of current unskilled workers who stop working, for every 100 SNAP recipients who newly enter employment. We estimate this to be 10.14, so for every 100 new unskilled workers, 10.14 existing workers would be displaced, raising employment by 89.86. The details of the derivation and estimation of \(\lambda_u \) are given in Appendix 2.

One of the most important parameters needed for the computation of \(\lambda_u \) is the wage elasticity of supply of unskilled labor, given by \(\varepsilon_u \). We use a value of 0.4 for \(\varepsilon_u \), which is probably near the upper end of the plausible range (Johnson 1998; Juhn, Murphy & Topel 1991; Bartik 2000). This implies that a 10 percent increase in the wage rate for unskilled workers would increase the supply of unskilled workers by 4%. We assume that this elasticity is 0 for skilled labor, in line with common usage.

When we allow for the displacement effect, the increase in GDP resulting from 1.11 million SNAP recipients taking up employment would be $21.5 billion. This is roughly 10 percent lower than the “naïve” estimate of the effect on GDP because it allows for an adjustment in the labor supply.
Case 3: Long run with adjusted capital stock but no labor adjustment

When the supply of workers to the market rises, the wage will fall, as we have seen, and this induces employers to boost their hiring. It also opens up a long-term opportunity for investors, who can now draw on a larger and cheaper pool of workers. This will lead to increased investment, and an expansion of the country’s capital stock, which in turn will raise GDP further.

If we assume that the capital stock will expand until the return on capital falls back to its original level, we can – with some additional assumptions about the relevant parameters – estimate the long-term effect on GDP. The technical details are set out in Appendix 3. The result is that a 1.11 million increase in employment, resulting from changes in SNAP procedures, would raise GDP by $45.9 billion.

Case 4: Long run with adjustments to the capital stock and to labor supply

In this case we allow the capital stock to adjust to the additional supply of labor, and we also allow the labor force to respond to the reduction in wage rates. This combines the displacement effect from Case 2 with the expansionary effect of more capital from Case 3. The result, which is the most plausible of all those considered here, would see an increase of GDP of $41.4 billion, resulting from the increase in employment for SNAP recipients of 1.11 million.

These results are calculated in an Excel program, which has been calibrated to reflect the best-available estimates of the relevant parameters. Here is a reproduction of the “face page” of that program:

The user simply enters the change in employment that is expected as a result of changes in the SNAP policies and procedures, and types Ctrl-Shift-F. This latter step recalibrates the program, and the model estimates the effects on GDP in the short-run and long-run, in each case without and then with labor supply reaction.
Robustness

The results shown here are only as convincing as the parameters, and model, that undergird them. In this section we explore the robustness of the results to the choices we make about the parameters of the model. Specifically, we vary the parameters shown in Table 2, one by one, and show the implications for employment in Table 3.

If unskilled labor is relatively unresponsive to a change in wages, then the increase in employment of 1.11 million will lead to a very small offsetting fall in employment among those already working, and the increase in GDP will be almost as large as in the “naïve” case – compare columns (1) and (2) in Table 3. If capital and labor are closer substitutes, then the effect will be a tiny increase in the contribution of more labor to GDP, but it is not measurable at the level of one decimal place, as a comparison between columns (1) an (3) in Table 3 shows.

Finally, if labor is less easily substituted across types (male/female, skilled/unskilled), then an increase in the employment of unskilled labor will create a larger displacement effect, resulting in a smaller rise in GDP than in the baseline case. The broad conclusion is that our model is robust to the choice of the key parameters, and so can be used with some confidence.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Value in model</th>
<th>Alternative value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wage elasticity of supply of unskilled labor</td>
<td>ε_u</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Elasticity of substitution between labor and capital</td>
<td>σ</td>
<td>0.5</td>
<td>1.1</td>
</tr>
<tr>
<td>Elasticity of intrafactor substitution</td>
<td>τ</td>
<td>1.5</td>
<td>0.9</td>
</tr>
</tbody>
</table>
Table 3. Effects of an increase in employment of SNAP recipients by 1.11 million, using different model parameters ($ billion in 2018 prices)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Labor less responsive to wages</th>
<th>Capital a better substitute for labor</th>
<th>Less substitution within labor types</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
</tr>
<tr>
<td>Short-term effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>“Naïve” estimate</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
<td>23.8</td>
</tr>
<tr>
<td>Labor supply effects included</td>
<td>21.5</td>
<td>22.6</td>
<td>21.5</td>
<td>20.2</td>
</tr>
<tr>
<td>Long-term effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital stock rises</td>
<td>45.9</td>
<td>45.9</td>
<td>45.9</td>
<td>45.9</td>
</tr>
<tr>
<td>Capital stock rises & labor supply reacts</td>
<td>41.4</td>
<td>43.6</td>
<td>41.4</td>
<td>38.9</td>
</tr>
</tbody>
</table>

Memo items: Parameters
\[
\begin{align*}
\varepsilon_u & = 0.4 & 0.2 & 0.4 & 0.4 \\
\sigma & = 0.5 & 0.5 & 1.1 & 0.5 \\
\tau & = 1.5 & 1.5 & 1.5 & 0.9 \\
\end{align*}
\]

Source: Authors’ calculations. For definitions of parameters, see Table 2.

Concluding comments

We find that if 1.11 million people were moved into employment, the effects on GDP would be substantial, raising it by $41.4 billion, which is slightly higher than the GSP of Vermont ($31 billion in 2016) or Wyoming ($38 billion), and just a bit lower than the GSP of Montana ($46 billion) or South Dakota ($48 billion).

While these results are plausible, they are only as good as the underlying data, parameters, assumptions, and model. We have chosen these with care, but it is worth emphasizing that our results are estimates, and other researchers could plausibly reach somewhat different conclusions.
Appendix 1.

Derivation of the “Naïve” Measure of the Effect of More Employment on GDP

A country’s GDP is generated by inputs of capital \((K)\) and labor \((L)\). But labor varies along a number of dimensions, including skill and gender. We distinguish four groups, as follows:

<table>
<thead>
<tr>
<th>Code</th>
<th>Group</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male, unskilled</td>
<td>High school education or less</td>
</tr>
<tr>
<td>2</td>
<td>Female, unskilled</td>
<td>High school education or less</td>
</tr>
<tr>
<td>3</td>
<td>Male, skilled</td>
<td>At least some college education</td>
</tr>
<tr>
<td>4</td>
<td>Female, skilled</td>
<td>At least some college education</td>
</tr>
</tbody>
</table>

The economy’s production function is given by

\[
Y = F(L_1, L_2, L_3, L_4, K).
\]

In a market-based economy we expect labor to be paid the value of its marginal product (i.e. the contribution to output of the last worker worth hiring). So

\[
w_i = \frac{\partial Y}{\partial L_i} \equiv F_i(L_1, L_2, L_3, L_4, K),
\]

and the return on capital is given by

\[
r = \frac{\partial Y}{\partial K} \equiv F_K(L_1, L_2, L_3, L_4, K).
\]

The value of labor and capital incomes must add up to the value of GDP; this “adding up” constraint implies:

\[
Y \equiv \sum_i w_i L_i + rK.
\]

When one more worker of type \(i\) is hired, assuming no change in the stock of capital or the employment of existing workers, the addition to GDP (which is what interests us) is

\[
\frac{\partial Y}{\partial L_i} = F_i = w_i.
\]
The injection of more workers will affect wages: those with similar skills to the new workers will see their wages fall due to the extra competition for work; owners of capital will gain, because they can now hire labor more cheaply. These are short-run effects, and hold only as long as the stock of capital and labor supply do not respond to the introduction of the additional workers.

Denote the change in the quantity of labor of type i ($i = 1,...,4$) by dL_i. Then the total change in income going to group j ($j = 1,...,4$) is given by (following Johnson 1998):

$$\frac{\partial w_j L_j}{\partial L_i} = w_i \gamma_i C_{ij}.$$

where $\gamma_i = \frac{F_i L_i}{P}$ is the output elasticity of group i, and $C_{ij} = \frac{F_i F_j}{F_i F_j}$ is the partial elasticity of complementarity between factors i and j. If the two factors are substitutes, $C_{ij} < 0$, and group j loses income if more workers of type i enter the market. If $C_{ij} > 0$, the two types of labor are complementary, and more labor of type i pushes up the income of workers of type j.

Similarly, for capital, the change in return is given by

$$\frac{\partial r K}{\partial L_i} = w_i \gamma_k C_{ik}.$$

Implementation

We implement this model using a nested constant elasticity of substitution (CES) model. Output is given by a CES production function that combines an aggregate of labor (G) and capital (K):

$$Y = a \left[\mu G^{\sigma-1} + (1 - \mu) K^{\sigma-1} \right]^{\frac{\sigma}{\sigma-1}},$$

and the labor aggregate is constructed as a CES aggregation of the four types of labor, so

$$G \equiv b \left[\delta_1 L_1^{\tau-1} + \delta_2 L_2^{\tau-1} + \delta_3 L_3^{\tau-1} + \delta_4 L_4^{\tau-1} \right]^{\frac{\tau}{\tau-1}},$$

where τ is the elasticity of intrafactor substitution, and the adding-up condition requires that $\sum \delta_i = 1$.

When GDP (i.e. Y) is maximized, we get the first-order conditions:

$$r = \frac{\partial Y}{\partial K} = MP_K = (1 - \mu) a^{\frac{1}{\sigma}} \left(\frac{Y}{K} \right)^{\frac{1}{\sigma}},$$

where r is the marginal product of capital.
\[\frac{\partial Y}{\partial G} = MP_G = \mu a^{1-\frac{1}{\sigma}} \left(\frac{Y}{G} \right)^{\frac{1}{\sigma}}, \text{ and} \]
\[\frac{\partial Y}{\partial L_i} = MP_G \delta_i b^{1-\frac{1}{\tau}} \left(\frac{G}{L_i} \right)^{\frac{1}{\tau}}, \ i = 1, \ldots, 4. \]

We start with values of \(Y \) (i.e. GDP), the capital stock \((K) \), and the different types of labor \((L_i) \), as well as values for the elasticity of substitution \((\sigma) \) and the elasticity of intrafactor substitution \((\tau) \), and are then

Table A1.1. Parameters required for the model

<table>
<thead>
<tr>
<th>Parameter/Variable</th>
<th>Symbol</th>
<th>Value</th>
<th>Notes and Sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>(Y)</td>
<td>$20.272 \text{ trn}</td>
<td>GDP in 2017, raised by 2.5% for growth and a further 2% for inflation.</td>
</tr>
<tr>
<td>Capital stock</td>
<td>(K)</td>
<td>$63.649 \text{ trn}</td>
<td>University of Groningen and University of California, Davis, Capital Stock at Constant National Prices for United States, retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/RKNANPUSA666NRUG, June 30, 2018. Figure for 2014 updated to 2018 using 2% real growth plus 2% annual inflation.</td>
</tr>
<tr>
<td>Employment (“labor”)</td>
<td>(L_i)</td>
<td></td>
<td>See Table 1 for breakdown by type of labor (male/female by unskilled/skilled). From Current Population Survey, forecast to 2018.</td>
</tr>
<tr>
<td>Elasticity of substitution</td>
<td>(\sigma)</td>
<td>0.5</td>
<td>Krusell et al. 2000: between unskilled labor and equipment: 1.67; between skilled labor and equipment: 0.67.</td>
</tr>
<tr>
<td>Elasticity of intrafactor substitution</td>
<td>(\tau)</td>
<td>1.5</td>
<td>See Table A.1.2 for sources.</td>
</tr>
<tr>
<td>Generated by model</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(a)</td>
<td>0.562</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\mu)</td>
<td>0.151</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(b)</td>
<td>275.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta_1)</td>
<td>0.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta_2)</td>
<td>0.195</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta_3)</td>
<td>0.310</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\delta_4)</td>
<td>0.185</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Return on capital</td>
<td>(r)</td>
<td>0.15323</td>
<td>Initial value; also long-run value.</td>
</tr>
</tbody>
</table>
able to calibrate the system to yield values of μ, a, b, and the δ_i through a series of successive optimizations. The values that we use are set out in Table A1.1.

Once the system has been calibrated, we are able to increase the amount of employment that results from the changes in SNAP policies and procedures, re-optimize where necessary, and so compute the new level of GDP.

The modeling of labor markets ranges from fairly basic to highly complex, and Boeters and Savard (2011) give an excellent survey of the issues involved. For instance, Hanson and Hamrick (2004) developed a large CGE model for the USDA, with 99 categories of household, and several industrial sectors.

However, a model of this complexity is not needed for our current purpose, which is to get a robust estimate of the impact on GDP of moving more SNAP recipients into employment. A more pragmatic approach is taken by Bartik (2000), who also uses the Johnson (1998) model, and provides a good summary of the relevant literature.

Table A1.2. Estimates of the value of the intra-labor elasticity of substitution (τ)

<table>
<thead>
<tr>
<th>Study</th>
<th>Estimate of τ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghosh 2018. Elasticity of substitution</td>
<td>1.7</td>
</tr>
<tr>
<td>between male and female labor</td>
<td></td>
</tr>
<tr>
<td>Johnson 1970</td>
<td>1.34</td>
</tr>
<tr>
<td>Johnson 1997</td>
<td>1.5</td>
</tr>
<tr>
<td>Katz and Murphy 1992</td>
<td>1.41</td>
</tr>
<tr>
<td>Krusell et al. 2000. Elasticity of substitution</td>
<td>1.67</td>
</tr>
<tr>
<td>between unskilled labor and skilled labor.</td>
<td></td>
</tr>
<tr>
<td>Cicconi and Peri 2005</td>
<td>1.50</td>
</tr>
<tr>
<td>Autor et al. 2008</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Appendix 2.

Derivation of the “Displacement Effect” Parameter λ_u

When more workers enter the labor market, they push down wages, and this in turn leads some existing workers to withdraw from the market and stop working. This is the “displacement effect”, represented by λ_u, that we need to derive and measure. This derivation follows Johnson (1998).

Let V be the disutility of work, distributed according to some distribution $z(V)_{V_0}^{V_1}$, and b be the “pecuniary” benefit when not working (including food stamps, pensions, and so on). For a wage w_i, as long as $V_0 < w_i - b < V_1$, some people will choose to work ($w_i - b > V_0$) and some will not ($w_i - b < V_0$). From this one can set up a labor supply function:

$$L_i = \left[1 - \int_{w_i-b}^{V_1} z(V).dV\right]N_i = Z_i(w_i - b, \mu_i).N_i$$

This says that the labor supply depends on the size of the adult population (N) and the distribution of wages relative to the disutility of work. A higher wage is assumed to elicit greater labor supply, so

$$\frac{\partial L_i}{\partial w_i} = z_i(w_i - b, \mu_i).N_i > 0.$$

The real wage elasticity of labor supply for group i is then

$$\epsilon_i \equiv \frac{\partial L_i}{\partial w_i} \frac{w_i}{L_i} = z_iN_i \frac{w_i}{L_i} = z_i \frac{w_i}{Z_i}.$$

If we assume $\epsilon_S = 0$, so the supply of skilled labor is unresponsive to wages (as is widely believed), and if we separate labor into just two categories, skilled (S) and unskilled (U), and assuming that the entrants into the labor force are essentially all unskilled, we have

$$L_U = Z_U(w_U - b, \mu_U).$$

Since the wage is given by the marginal revenue product of labor (see Appendix 1), we have

$$w_U = F_G G_U (L_U + L_{SNAP}, L_S),$$

where L_{SNAP} represents the labor supply of SNAP recipients. In the long-run, F_G is constant because the ratio of capital to labor is constant in “steady state”, and we normalize it to equal 1, choosing the units of the other variables appropriately. By totally differentiating, we get
\[
\frac{\partial L_U}{\partial L_{SNAP}} = -\lambda_U = -\frac{\beta(1-m_U)\epsilon_U}{\tau + \beta(1-m_U)\epsilon_U},
\]

where \(m_U = \frac{L_{SNAP}}{L_U} \), \(\tau \) is the elasticity of intrafactor substitution (see Appendix 1), and \(\beta \) is the share of unskilled labor in aggregate labor compensation. If the supply of existing workers were unresponsive to a change in the wage rate, \(\epsilon_U = 0 \), and so \(\lambda_U = 0 \), meaning that the injection of more workers due to changes in SNAP policies and procedures would not displace any existing workers.

To estimate \(\lambda_U \) we need values for \(\beta, m_U, \epsilon_U \) and \(\tau \), and these are shown in Table A.2.a. Johnson (1998) argues that \(\epsilon_U \) cannot plausibly be greater than 0.4 (see also John, Murphy and Topel 1991). We use this upper bound of 0.4, which potentially overstates the displacement effect, but in Table 3 we also present the results assuming \(\epsilon_U = 0.2 \).

We estimate \(\lambda_U \) to be 0.10, which means that for every 100 members who enter the unskilled segment of the labor force, 10 leave (as a result of the lower wages). Johnson (1998), in his study of immigration into the United States, estimates a displacement parameter of 0.12, which is very similar to the value we found.

<table>
<thead>
<tr>
<th>Parameter value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta)</td>
<td>0.440</td>
</tr>
<tr>
<td>(m_U)</td>
<td>0.037</td>
</tr>
<tr>
<td>(\epsilon_U)</td>
<td>0.4</td>
</tr>
<tr>
<td>(\tau)</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Using the formula:

\[
\lambda_U = 0.1014
\]
Appendix 3.

Derivation of the Long-term Effects of More Employment When Capital Can Adjust

In the long run, an influx of labor pushes down wages, inducing employers to hire more workers. The result is a higher level of profit. In due course, the increased profit rate attracts investment that would not otherwise have been undertaken. This in turn pushes up GDP further.

In long-run steady state:

\[
\frac{\dot{K}}{K} = g_Y,
\]

which says that the growth rate of the capital stock must equal the growth rate of GDP, because otherwise one would outpace the other indefinitely, and this is implausible. If there are no long-term net flows of capital to or from other countries, all changes in the capital stock are financed by domestic savings, from which depreciation must be netted out. Thus

\[
\dot{K} = sY - \delta K.
\]

These equations imply that the long-run output-to-capital ratio is stable, and equals

\[
\frac{Y}{K} = \frac{(g_Y + \delta)}{s}.
\]

Since

\[
r = F_K = \gamma_K \frac{Y}{K} = \gamma_K \left(\frac{g_Y + \delta}{s} \right),
\]

it follows that, given \(\gamma_K, g_Y, \delta\) and \(s\), the rate of return on capital eventually returns to its initial level.

To implement this, we use the parameters that are discussed in Appendix 1 and derive an estimate of \(r\) (see bottom row of Table A.1.1). After adding labor to the production function, the marginal product of capital rises, so we then add capital until its rate of return \((r)\) goes back to its original level. The new levels of capital and labor in the production function give us the new value of GDP.
References

About the Authors

Jonathan Haughton, PhD, Harvard University, is a BHI adjunct scholar and professor of economics at Suffolk University. He is a widely-published specialist in the areas of economic development, international trade and taxation, he has lectured, taught and conducted research in over 20 countries.

Paul Bachman, MSIE, Suffolk University, is the director of research at BHI. He manages the Institute’s research projects, including the institute’s State Tax Analysis Modeling Program and conducts research for other projects at BHI. Mr. Bachman has authored research papers on state and national tax policy, state labor policy and annually produces the Institute’s state revenue forecasts for Massachusetts and presents them to the Joint Legislative Committee for Ways and Means.

David G. Tuerck, PhD, University of Virginia, is president of the institute and professor of economics at Suffolk University in Boston. He has published widely on economic policy issues and brings over five decades of experience as a working economist. An authority on public policy issues including state tax policy and analysis, welfare reform and the economics of regulation, he has made more than 100 television and radio appearances and has testified before the U.S. Senate Committee on Labor and Human Resources, Subcommittee on Children and Families, as well as various committees of the Massachusetts Legislature.

The authors wish to thank Xhulia Kanani, BS, Economics, Suffolk University, and William Burke, BSBA, Suffolk University, for their assistance with the literature review and in collecting data. Both serve as research assistants at the Beacon Hill Institute.
The Beacon Hill Institute for Public Policy Research focuses on federal, state and local economic policies as they affect citizens and businesses. The Institute conducts research and educational programs to provide timely, concise and readable analyses that help voters, policymakers and opinion leaders understand today's leading public policy issues.

©July 2018 by the Beacon Hill Institute

THE BEACON HILL INSTITUTE
FOR PUBLIC POLICY RESEARCH

165 Main Street, Suite 306,
Medway, MA 02053
Tel: 855-244-4550
bhi@beaconhill.org
http://www.beaconhill.org